Московский государственный университет печати. Оптоэлектронные приборы - реферат Маркировка различных видов оптоэлектронных приборов

Оптоэлектроника использует оптические и электронные явления в веществах и их взаимные связи для передачи, обработки и хранения информации. Элементной базой оптоэлектроники являются оптоэлектронные приборы - оптроны.

Оптроном называется устройство, состоящее из связанных между собой оптически (посредством светового луча) светоизлучателя и фотоприемника и служащее для управления и для передачи информации.

Оптрон представляет собой единую конструкцию, состоящую из источника и приемника излучения, связанных между собой оптическим каналом. Структурная схема оптрона приведена на рис. 8.8.

Рис.8.8. Структурная схема оптрона

Входной сигнал, например электрический ток I вх, преобразуется в светоизлучателе СИ в световой поток Ф , энергия которого пропор­циональна входному сигналу. По оптическому каналу ОК световой поток направляется в фотоприемник ФП, где преобразуется в пропорциональное световому потоку значение выходного электрического тока I вых. С помощью устройства управления оптическим каналом УОК можно управлять световым потоком путем изменения физических свойств самого оптического канала.

Таким образом, в оптронах осуществляется двойное преобразование энергии: электрической в световую и световой снова в электрическую. Это придает оптронам ряд совершенно новых свойств и позволяет на их основе создавать электронные устройства с исключительно своеобразными параметрами и характеристиками. Так, применение оптронов позволяет осуществить почти идеальную электрическую развязку между элементами устройства (сопротивление до 10 16 Ом, проходная емкость до 10 -4 пФ). Кроме того, могут быть эффективно использованы такие свойства оптронов, как однонаправленность информации, отсутствие обратной связи с выхода на вход, высокая помехозащищенность, широкая полоса пропускание (от нуля до сотен и даже тысяч мегагерц), совместимость с другими (полупроводниковыми) приборами. Это дает возможность использовать оптроны для модулирования сигналов, измерений в высоковольтных цепях, согласования низкочастотных цепей с высокочастотными и низкоомных с высокоомными.

К недостаткам оптронов следует отнести зависимость их параметров от температуры, низкие КПД и коэффициент передачи.

Рисунок 8.9. Устройство оптрона: 1 - выводы: 2 - фотоприемник: 3 - корпус; 4 - оптическая среда; 5 - светодиод



Устройство оптрона показано на рис.8.9 В качестве излучателей в оптронах используют обычно светодиоды на основе арсенида-фосфида галлия GaAsP или алюминий-арсенида галлия GaAlAs, характеризующиеся большой яркостью, высоким быстродействием и длительным сроком службы. Кроме того, они хорошо согласуются по спектральным характеристикам с фотоприемниками на основе кремния. В качестве фотоприемников могут использоваться фоторезисторы, фотодиоды, фототранзисторы и фототиристоры.

Фотодиоды и фототранзисторы как приемники излучения получили в оптронах наибольшее распространение, поскольку по своим характе­ристикам и параметрам они могут работать совместно с интегральными микросхемами. Фототиристоры широко применяются в оптронах в качестве ключевых усилителей мощности, управляемых световым излучением. Передача светового излучения в оптронах осуществляется через оптический канал, роль которого могут играть различные среды. Назначение оптического канала - передача максимальной световой энергии от излучателя к приемнику. Передающей средой могут быть воздух, различные иммерсионные среды, а также оптические световоды длиной 1 м и более. Световолоконные оптические линии связи позволяют довести пробивное напряжение изоляции между входом и выходом оптрона до 150 кВ, что дает возможность применять оптроны для измерений в высоковольтных цепях.



Входными параметрами оптронов являются: номинальный вход­ной ток светодиода в прямом направлении I вх.ном и падение напря­жения на нем в прямом направлении U вх при номинальном значении входного тока; входная емкость С вх в заданном режиме; максимально допустимый входной ток I вх.макс; максимально допустимое обратное напряжение на входе U вх.обр.макс.

Выходными параметрами оптронов являются: максимально допус­тимое обратное напряжение U вх.обр.макс, прикладываемое к выходу; максимально допустимый выходной ток I вых.макс; выходная емкость С вых; световое R св и темновое R т выходные сопротивления (для фоторезисторных оптронов).

Из передаточных параметров исходными являются коэффициент передачи тока К I =(I вых / I вх)100, либо дифференциальный коэффици­ент передачи тока К I д = (dI вых / dI вх)100, выраженные в процентах.

Быстродействие оптрона оценивают при подаче на его вход прямоуголь­ного импульса по времени задержки t з д от момента подачи импульса до момента достижения выходным током значения 0,1 I вых.обр.макс, а также по времени нарастания t нар выходного тока от 0,1 до 0,9 его максимального значения. Суммарное время задержки и нарастания называют временем включения t вкл. Быстродействие фотоприемника характеризуется его частотными свойствами, т.е. такой частотой синусоидально модулированно­го светового потока, при которой чувствительность фотоприемника вследствие инерционности уменьшается в раз.

Приведем краткое описание некоторых типов наиболее распространенных промышленных оптронов.

Фотодиодный оптрон. Условное графическое обозначение его приведено на рис. 8.10,а . В качестве излучателя используется светодиод на основе арсенида галлия.

В качестве фотоприемников в диодных оптронах используются кремниевые фотодиоды, которые хорошо согласуются по спектральным характеристикам и быстродействию с арсенид-галлиевыми светодиодами.

Коэффициент передачи тока диодного оптрона мал (K I = 1,0 1,5%), однако диодные оптроны являются самыми быстродействующими.

Как элемент электрической цепи фотоприемник диодного оптрона может работать в двух режимах: фотопреобразователя с внешним источни­ком питания и фотогенератора без внешнего источника питания.

Если учесть зависимость светового потока светодиода оптрона от тока I вх через светодиод, то можно найти зависимость тока I н нагрузочного резистора R н или напряжения U н на нем от входного тока оптрона, т.е. I н = f(I вх ) или U н = φ (I вх ) .

Надо учитывать, что для передачи максимальной энергии требуется согласование нагрузочного резистора с выходным сопротивлением оптрона.

Фототранзисторный оптрон (рис. 8.10, б ).По сравнению с фотодиодным оптроном в качестве фотоприемника в нем используется кремниевый фототранзистор. Являясь усилителем базового тока, фототранзистор имеет существенно более высокую чувствительность, чем фотодиод, поэтому коэффициент передачи тока фототранзисторного оптрона K I = 50 100 %, а оптрона с составным фототранзистором – до 800% и более.

Рисунок 8.10. Условные графические обозначения оптронов: фотодиодного (а), фототранзисторного (б), фоторезисторного (в), фототиристорного (г)

Недостатком фототранзисторов является то, что они по сравнению с фотодиодами гораздо более инерционны и имеют быстродействие 10 -4 – 10 -5 с.

Фоторезисторный оптрон (рис.8.10,в ).В качестве фотоприемника в оптронах иногда используют фоторезисторы на основе селенида или сульфида кадмия (CdSe,CdS), а в качестве излучателя - спектрально согласующиеся с ними светодиоды на основе фосфида или арсенида-фосфида галлия (GaP, GaAsP). Быстродействие фоторезисторных оптронов целиком определяется быстродействием фотоприемника, которое составляет 100-200 мкс.

Фототиристорный оптрон (рис. 8.10,г ) включает в себя фототиристор в качестве фотоприемника. Быстродействие фототиристорного оптрона определяется временем выключения фототиристора, в течение которого прибор переходит из открытого состояния в закрытое, оно составляет десятки микросекунд.

В зависимости от типа фотоприемника оптроны могут применяться в электронных устройствах для переключения, преобразования, согласования, модуляции и т.д. Они могут использоваться также в качестве малогабаритных импульсных трансформаторов, реле для коммутации напряжений и токов, в автогенераторах, цепях обратной связи и т.д.

Оптроны с открытым оптическим каналом служат в качестве раз­личных датчиков (перемещения, «края объекта» и др.). В устройствах передачи информации часто применяют оптоэлектронные интегральные микросхемы, в которых в одном корпусе объединены оптроны и интегральная микросхема. Фотоприемник такой микросхемы может быть изготовлен в том же кристалле кремния, что и транзисторная микросхема, как одно целое.

Оптоэлектронные устройства с управляемым световодом можно использовать в качестве логических ячеек преобразователей частоты, в устройствах переключения индикаторов, индикаторах вида жидкости, устройствах измерения малых перемещений, сенсорных устройствах очувствления роботов и т.д. Эти устройства обладают высоким быстродействием, помехозащищенностью, возможностью применения в агрессивных и взрывоопасных средах.

В последнее время при изготовлении оптоэлектронных устройств источник и приемник излучения оказывается возможным удалять из зоны измерения (от объекта контроля) на десятки метров с помощью элементов волоконной оптики - волоконных световодов (жгутов из нитей стекловолокна).

Оптоэлектронные устройства широко применяют в вычислительной технике, автоматике, контрольно-измерительных устройствах. В дальнейшем применение этих устройств будет расширяться по мере улучшения их характеристик: надежности, долговечности и температурной стабильности.

Оптронными приборами (оптронами) называют такие полупроводниковые приборы, в которых имеются источник и приемник излучения (светоизлучатель и фотоприемник) с тем или иным видом оптической связи между ними.

Принцип действия оптронов любого вида основан на следующем. В излучателе энергия электрического сигнала преобразуется в световую, а в фотоприемнике, наоборот, световой сигнал вызывает электрический отклик (сигнал). Практически распространение получили лишь оптроны, у которых имеется прямая оптическая связь от излучателя к фотоприемнику и, как правило, исключены все виды электрической связи между этими элементами.Наличие оптической связи обеспечивает электрическую изоляцию между входом (излучателем) и выходом (фотоприемником).

Таким образом, в электронной цепи такой прибор выполняет функцию элемента связи, в котором в то же время осуществлена электрическая (гальваническая) развязка входа и выхода.

Применение оптоэлектронных приборов достаточно разнообразно: для связи блоков аппаратуры, между которыми имеется значительная разность потенциалов; для защиты входных цепей измерительных устройств от помех и наводок, оптическое, бесконтактное управление сильноточными и высоковольтными цепями (твердотельные реле), запуск мощных тиристоров, симисторов, управление электромеханическими релейными устройствами.

Создание "длинных" оптронов (приборов с протяженным гибким волоконно-оптическим световодом в качестве оптического канала) открыло совершенно новое направление применения изделий оптронной техники - связь на расстояниях по волоконной оптике.

Оптоэлектронные приборы находят применение и в чисто радиотехнических схемах модуляции, автоматической регулировки усиления и др. Воздействие по оптическому каналу используется здесь для вывода схемы в оптимальный рабочий режим, для бесконтактной перестройки режима и т. п.

Условно-графические обозначения основных типов оптронов приведены на рис.15.1.

15.1 Классификация оптоэлектронных приборов

Оптоэлектронные приборы классифицируются по следующим признакам.

По типу используемого излучателя оптроны подразделяются на:

    с излучателем на миниатюрных лампочках накаливания. Оптроны на таких излучателях инерционны, и в настоящее время практически не используются, хотя находят применение в резисторных оптронах

    с излучателем на неоновых лампочках, в которых используется свечение электрического разряда газовой смеси неон-аргон. Этим видам излучателей свойственны невысокая светоотдача, низкая устойчивость к механическим воздействиям, ограниченная долговечность, большие габариты, полная несовместимость с интегральной технологией. Тем не менее, в отдельных видах оптронов они могут находить применение.

    с излучателем на электролюминесцентных ячейках.Электролюминесцентные ячейки имеют невысокую эффективность преобразования электрической энергии в световую, низкую долговечность (особенно - тонкопленочные), сложны в управлении (например, оптимальный режим для порошковых люминофоров ~220 В при f =400 ... 800Гц). Основное достоинство этих излучателей - конструктивно-технологическая совместимость с фоторезисторами, возможность создания на этой основе многофункциональных, многоэлементных оптронных структур. В настоящее время находят ограниченное применение.

    с излучателем на светодиодах и лазерных диодах. Основным наиболее универсальным видом излучателя, используемым в оптронах, является полупроводниковый инжекционный светоизлучающий диод - светодиод. Это обусловлено следующими его достоинствами: высокое значение КПД преобразования электрической энергии в оптическую; узкий спектр излучения (квазимонохроматичность); широта спектрального диапазона, перекрываемого различными светодиодами; направленность излучения; высокое быстродействие; малые значения питающих напряжений и токов; совместимость с транзисторами и интегральными схемами; простота модуляции мощности излучения путем изменения прямого тока; возможность работы, как в импульсном, так и в непрерывном режиме; линейность ватт-амперной характеристики в более или менее широком диапазоне входных токов; высокая надежность и долговечность; малые габариты; технологическая совместимость с изделиями микроэлектроники.

По типу используемого фотоприемника оптроны подразделяются на:

    Оптроны на основе фоторезисторов,свойства которых при освещении меняются по заданному сложному закону, что позволяет моделировать математические функции, и является шагом на пути создания функциональной оптоэлектроники. Однако, фоторезисторные оптроны инерционны.

    Оптроны на основе фотодиодов;

    Оптроны на основе фототранзисторов;

    Оптроны на основе фототиристоров.

Последниетри являются наиболее универсальными фотоприемниками, работающими с открытым р - n-переходом. В подавляющем большинстве случаев они изготовляются на основе кремния, и область их максимальной спектральной чувствительности находится вблизи λ=0,7...0,9 мкм.

По типу используемого оптического канала оптроны подразделяются на:

    Оптроны с открытым оптическим каналом. В таких оптронах излучатель и фотоприемник разделены воздушным зазором. Они широко применяются для определения числа оборотов крутящихся валов, синхронизации передвижения механических систем, как датчики положения и т.п. Оптроны с открытым каналом в свою очередь подразделяются на оптроны, работающие на отражение и пропускание.

    Оптроны с закрытым оптическим каналом. В них оптический канал защищен от любых внешних воздействий. Такие оптроны применяются для гальванической развязки входных и выходных электрических цепей. Если в качестве выходной цепи используются мощные силовые приборы (тиристоры, симисторы, полевые MOSFET-транзисторы), то такие оптроны называют твердотельными реле. Такие реле в настоящее время являются альтернативой электромагнитных реле и их технология непрерывно совершенствуется.

    Оптроны с “удлиненным” оптическим каналом. В таких оптронах излучатель и фотоприемник могут находиться на значительном расстоянии. В них оптический канал, связывающий излучатель и фотоприемник могут представляет собой волоконный световод. Такие оптоэлектронные приборы широко применяются для передачи информации в локальных сетях ЭВМ.

По спектральному диапазону оптического канала оптроны подразделяются на:

    Оптроны видимого диапазона с длиной волны оптического излучения от 0,4 до 0,75 мкм.

    Оптроны ближнего ИК-диапазона с длиной волны оптического излучения от 0,8 до 1,2 мкм. Этот вид излучения особенно эффективен для оптоэлектронных приборов с открытым каналом.

По конструктивно-технологическому признаку оптроны подразделяются на:

    Опопары (элементарные оптроны), которые содержат один излучатель и один элементарный фотоприемник. В зависимости от типа используемого фотоприемника они могут быть резистивными, диодными, транзисторными, тиристорными и т.п.

    Оптоэлектронные (оптронные) интегральные микросхемы, в которых помимо элементарного оптрона содержатся дополнительные электронные устройства: усилители, компараторы, логические схемы и т. п. В таких интегральных микросхемах входы и выходы гальванически развязаны.

    Специальные виды оптронов: дифференциальные оптроны, которые содержат несколько излучателей и фотоприемников; оптоэлектронные датчики присутствия, задымленности, датчики положения и т.д.

    Оптоэлектронные приборы

    Основные характеристики светоизлучающих диодов видимого диапазона

    Основные характеристики светоизлучающих диодов инфракрасного диапазона

    Оптоэлектронные приборы в широком понимании

    Список использованных источников

Оптоэлектронные приборы

Работа оптоэлектронных приборов основана на электронно-фотонных процессах получения, передачи и хранения информации.

Простейшим оптоэлектронным прибором является оптоэлектронная пара, или оптрон. Принцип действия оптрона, состоящего из источника излучения, иммерсионной среды (световода) и фотоприемника, основан на преобразовании электрического сигнала в оптический, а затем снова в электрический.

Оптроны как функциональные приборы обладают следующими преимуществами перед обычными радиоэлементами:

полной гальванической развязкой «вход – выход» (сопротивление изоляции превышает 10 12 – 10 14 Ом);

абсолютной помехозащищенностью в канале передачи информации (носителями информации являются электрически нейтральные частицы – фотоны);

однонаправленностью потока информации, которая связана с особенностями распространения света;

широкополосностью из-за высокой частоты оптических колебаний,

достаточным быстродействием (единицы наносекунд);

высоким пробивным напряжением (десятки киловольт);

малым уровнем шумов;

хорошей механической прочностью.

По выполняемым функциям оптрон можно сравнивать с трансформатором (элементом связи) при реле (ключом).

В оптронных приборах применяют полупроводниковые источники излучения – светоизлучающие диоды, изготовляемые из материалов соединений группы А III B V , среди которых наиболее перспективны фосфид и арсенид галлия. Спектр их излучения лежит в области видимого и ближнего инфракрасного излучения (0,5 – 0,98 мкм). Светоизлучающие диоды на основе фосфида галлия имеют красный и зеленый цвет свечения. Перспективны светодиоды из карбида кремния, обладающие желтым цветом свечения и работающие при повышенных температурах, влажности и в агрессивных средах.

Светодиоды, излучающие свет в видимом диапазоне спектра, используют в электронных часах и микрокалькуляторах.

Светоизлучающие диоды характеризуются спектральным составом излучения, который достаточно широк, диаграммой направленности; квантовой эффективностью, определяемой отношением числа испускаемых квантов света к количеству прошедших через p -n -переход электронов; мощностью (при невидимом излучении) и яркостью (при видимом излучении); вольт-амперными, люмен-амперными и ватт-амперными характеристиками; быстродействием (нарастанием и спадом электролюминесценции при импульсном возбуждении), рабочим диапазоном температур. При повышении рабочей температуры яркость светодиода падает и снижается мощность излучения.

Основные характеристики светоизлучающих диодов видимого диапазона приведены в табл. 1, а инфракрасного диапазона – в табл. 2.

Таблица 1 Основные характеристики светоизлучающих диодов видимого диапазона

Тип диода

Яркость, кд/м 2 , или сила света, мккд

Цвет свечения

Постоянный прямой ток, мА

КЛ101 А – В

АЛ102 А – Г

АЛ307 А – Г

10 – 20 кд/м 2

40 – 250 мккд

150 – 1500 мккд

Красный, зеленый

Красный, зеленый

Светоизлучающие диоды в оптоэлектронных приборах соединяются с фотоприемниками иммерсионной средой, основным требованием к которой является передача сигнала с минимальными потерями и искажениями. В оптоэлектронных приборах используют твердые иммерсионные среды – полимерные органические соединения (оптические клеи и лаки), халькогенидные среды и волоконные световоды. В зависимости от длины оптического канала между излучателем и фотоприемником оптоэлектронные приборы можно подразделить на оптопары (длина канала 100 – 300 мкм), оптоизоляторы (до 1 м) и волоконно-оптические линии связи – ВОЛС (до десятков километров).

Таблица 2. Основные характеристики светоизлучающих диодов инфракрасного диапазона

Тип диода

Полная мощность излучения, мВт

Постоянное прямое напряжение, В

Длина волны излучения, мкм

Время нарастания импульса излучения, нс

Время спада импульса излучения, нс

АЛ106 А – Д

0,6 – 1 (при токе 50 мА)

0,2 – 1,5 (при токе 100 мА)

6 – 10 (при токе 100 мА)

1,5 (при токе 100 мА)

0,2 (при токе 20 мА)

10 (при токе 50 м А)

К фотоприемникам, используемым в оптронных приборах, предъявляют требования по согласованию спектральных характеристик с излучателем, минимуму потерь при преобразовании светового сигнала в электрический, фоточувствительности, быстродействию, размерам фоточувствительной площадки, надежности и уровню шумов.

Для оптронов наиболее перспективны фотоприемники с внутренним фотоэффектом, когда взаимодействие фотонов с электронами внутри материалов с определенными физическими свойствами приводит к переходам электронов в объеме кристаллической решетки этих материалов.

Внутренний фотоэффект проявляется двояко: в изменении сопротивления фотоприемника под действием света (фоторезисторы) либо в появлении фото-эдс на границе раздела двух материалов – полупроводник-полупроводник, металл-полупроводник (вентильные фотоэлементы, фотодиоды, фототранзисторы).

Фотоприемники с внутренним фотоэффектом подразделяют на фотодиоды (с p -n -переходом, МДП-структурой, барьером Шоттки), фоторезисторы, фотоприемники с внутренним усилением (фототранзисторы, составные фототранзисторы, фототиристоры, полевые фототранзисторы).

Фотодиоды выполняют на основе кремния и германия. Максимальная спектральная чувствительность кремния 0,8 мкм, а германия – до 1,8 мкм. Они работают при обратном смещении на p -n -переходе, что позволяет повысить их быстродействие, стабильность и линейность характеристик.

Наиболее часто в качестве фотоприемников оптоэлектронных приборов различной сложности применяют фотодиоды p - i -n -структуры, где i – обедненная область высокого электрического поля. Меняя толщину этой области, можно получить хорошие характеристики по быстродействию и чувствительности за счет малой емкости и времени пролета носителей.

Повышенными чувствительностью и быстродействием обладают лавинные фотодиоды, использующие усиление фототока при умножении носителей заряда. Однако у этих фотодиодов недостаточно стабильны параметры в диапазоне температур и требуются источники питания высокого напряжения. Перспективны для использования в определенных диапазонах длин волн фотодиоды с барьером Шоттки и с МДП-структурой.

Фоторезисторы изготовляют в основном из поликристаллических полупроводниковых пленок на основе соединения (кадмия с серой и селеном). Максимальная спектральная чувствительность фоторезисторов 0,5 – 0,7 мкм. Фоторезисторы, как правило, применяют при малой освещенности; по чувствительности они сравнимы с фотоэлектронными умножителями – приборами с внешним фотоэффектом, но требуют низковольтного питания. Недостатками фоторезисторов являются низкое быстродействие и высокий уровень шумов.

Наиболее распространенными фотоприемниками с внутренним усилением являются фототранзисторы и фототиристоры. Фототранзисторы чувствительнее фотодиодов, но менее быстродействующие. Для большего повышения чувствительности фотоприемника применяют составной фототранзистор, представляющий сочетание фото- и усилительного транзисторов, однако он обладает невысоким быстродействием.

В оптронах в качестве фотоприемника можно использовать фототиристор (полупроводниковый прибор с тремя p - n -переходами, переключающийся при освещении), который обладает высокими чувствительностью и уровнем выходного сигнала, но недостаточным быстродействием.

Многообразие типов оптронов определяется в основном свойствами и характеристиками фотоприемников. Одно из основных применений оптронов – эффективная гальваническая развязка передатчиков и приемников цифровых и аналоговых сигналов. В этом случае оптрон можно использовать в режиме преобразователя или коммутатора сигналов. Оптрон характеризуется допустимым входным сигналом (током управления), коэффициентом передачи тока, быстродействием (временем переключения) и нагрузочной способностью.

Отношение коэффициента передачи тока к времени переключения называется добротностью оптрона и составляет 10 5 – 10 6 для фотодиодных и фототранзисторных оптронов. Широко используют оптроны на основе фототиристоров. Оптроны на фоторезисторах не получили широкого распространения из-за низкой временной и температурной стабильности. Схемы некоторых оптронов приведены на рис. 4, а – г.

В качестве когерентных источников излучения применяют лазеры, обладающие высокой стабильностью, хорошими энергетическими характеристиками и эффективностью. В оптоэлектронике для конструирования компактных устройств используют полупроводниковые лазеры – лазерные диоды, применяемые, например, в волоконно-оптических линиях связи вместо традиционных линий передачи информации – кабельных и проводных. Они обладают высокой пропускной способностью (полоса пропускания единицы гигагерц), устойчивостью к воздействию электромагнитных помех, малой массой и габаритами, полной электрической изоляцией от входа к выходу, взрыво- и пожаробезопасностью. Особенностью ВОЛС является использование специального волоконно-оптического кабеля, структура которого представлена на рис. 5. Промышленные образцы таких кабелей имеют затухание 1 – 3 дБ/км и ниже. Волоконно-оптические линии связи используют для построения телефонных и вычислительных сетей, систем кабельного телевидения с высоким качеством передаваемого изображения. Эти линии допускают одновременную передачу десятков тысяч телефонных разговоров и нескольких программ телевидения.

В последнее время интенсивно разрабатываются и получают распространение оптические интегральные схемы (ОИС), все элементы которых формируются осаждением на подложку необходимых материалов.

Перспективными в оптоэлектронике являются приборы на основе жидких кристаллов, широко используемые в качестве индикаторов в электронных часах. Жидкие кристаллы представляют собой органическое вещество (жидкость) со свойствами кристалла и находятся в переходном состоянии между кристаллической фазой и жидкостью.

Индикаторы на жидких кристаллах имеют высокую разрешающую способность, сравнительно дешевы, потребляют малую мощность и работают при больших уровнях освещенности.

Жидкие кристаллы со свойствами, схожими с монокристаллами (нематики, наиболее часто используют в световых индикаторах и устройствах оптической памяти. Разработаны и широко применяются жидкие кристаллы, изменяющие цвет при нагревании (холестерики). Другие типы жидких кристаллов (смектики) используют для термооптической записи информации.

Оптоэлектронные приборы, разработанные сравнительно недавно, получили широкое распространение в различных областях науки и техники, благодаря своим уникальным свойствам. Многие из них не имеют аналогов в вакуумной и полупроводниковой технике. Однако существует еще много нерешенных проблем, связанных с разработкой новых материалов, улучшением электрических и эксплуатационных характеристик этих приборов и развитием технологических методов их изготовления.

Оптоэлектронный полупроводниковый прибор - полупроводниковый прибор, действие которого основано на использовании явлений излучения, передачи или поглощения в видимой, инфракрасной или ультрафиолетовой областях спектра.

Оптоэлектронные приборы в широком понимании представляют собой устройства , использующие оптическое излучение для своей работы: генерации, детектирования, преобразования и передачи информационного сигнала. Как правило, эти приборы включают в себя тот или иной набор оптоэлектронных элементов. В свою очередь, сами приборы можно подразделить на типовые и специальные, считая типовыми те из них, которые серийно производятся для широкого применения в различных отраслях промышленности, а специальные устройства выпускаются с учетом специфики конкретной отрасли - в нашем случае, полиграфии.

Все многообразие оптоэлектронных элементов подразделяют на следующие группы изделий: источники и приемники излучения, индикаторы, элементы оптики и световоды, а также оптические среды, позволяющие создавать элементы управления, отображения и запоминания информации. Известно, что любая систематизация не может быть исчерпывающей, но, как верно отметил наш соотечественник, открывший в 1869 г. периодический закон химических элементов, Дмитрий Иванович Менделеев (1834-1907), наука начинается там, где появляется счет, т.е. оценка, сравнение, классификация, выявление закономерностей, определение критериев, общих признаков. Учитывая это, прежде чем приступить к описанию конкретных элементов, следует хотя бы в общих чертах дать отличительную характеристику оптоэлектронных изделий.

Как было сказано выше, главным отличительным признаком оптоэлектроники является связь с информацией. К примеру, если в какой-то установке для закалки стальных валов используется лазерное излучение, то вряд ли закономерно относить эту установку к оптоэлектронным устройствам (хотя сам источник лазерного излучения имеет на это право).

Было также отмечено, что к оптоэлектронным относят обычно твердотельные элементы (в Московском энергетическом институте издано учебное пособие по курсу «Оптоэлектроника» под названием «Приборы и устройства полупроводниковой оптоэлектроники»). Но это правило не очень жесткое, так как в отдельных изданиях по оптоэлектронике подробно рассматривается работа фотоумножителей и электронно-лучевых трубок (они относятся к типу электровакуумных приборов), газовых лазеров и других устройств, которые не являются твердотельными. Однако в полиграфии упомянутые устройства широко используют наравне с твердотельными (в том числе и полупроводниковыми), решая схожие задачи, поэтому в данном случае они имеют полное право на рассмотрение.

Следует упомянуть еще о трех отличительных чертах, которые, по мнению известного специалиста в области оптоэлектроники Юрия Романовича Носова, характеризуют ее как научно-техническое направление.

Физическую основу оптоэлектроники составляют явления, методы, средства, для которых принципиальны сочетание и неразрывность оптических и электронных процессов. В широком смысле оптоэлектронное устройство определяется как прибор, чувствительный к электромагнитному излучению в видимой, инфракрасной (ИК) или ультрафиолетовой (УФ) областях, или прибор, излучающий и преобразующий некогерентное или когерентное излучение в этих же спектральных областях.

Техническую основу оптоэлектроники определяют конструктивно-технологические концепции современной микроэлектроники: миниатюризация элементов; предпочтительное развитие твердотельных плоскостных конструкций; интеграция элементов и функций.

Функциональное назначение оптоэлектроники состоит в решении задач информатики: генерации (формировании) информации путем преобразования различных внешних воздействий в соответствующие электрические и оптические сигналы; переносе информации; переработке (преобразовании) информации по заданному алгоритму; хранении информации, включающем такие процессы, как запись, собственно хранение, неразрушающее считывание, стирание; отображение информации, т.е. преобразование выходных сигналов информационной системы к воспринимаемому человеком виду.

Список использованных источников

    http://www.hi-edu.ru/e-books/xbook138/01/index.html?part-004.htm

    http://www.hi-edu.ru/e-books/xbook138/01/index.html?part-003.htm

    http://revolution.allbest.ru/radio/00049966_0.html

    http://revolution.allbest.ru/radio/00049842.html

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ

ИНСТИТУТ ТРАНСПОРТА

Реферат

на тему «Оптоэлектронные приборы.»

Выполнил:

Группы ОБД - 08

Чекардинн

Проверила:

Сидорова А.Э.

Тюмень 2010


  1. Элементы оптоэлектронных устройств

    Реферат >> Коммуникации и связь

    По схеме составного транзистора. Оптоэлектронные приборы Работа оптоэлектронных приборов основана на электронно-фотонных... передачи и хранения информации. Простейшим оптоэлектронным прибором является оптоэлектронная пара, или оптрон. Принцип действия...

  2. Применение оптронов и приборов для отображения информации

    Реферат >> Коммуникации и связь

    Определения Оптронами называют такие оптоэлектронные приборы , в которых имеются источник и... 2. В. И. Иванов, А. И. Аксенов, А. М. Юшин «Полупроводниковые оптоэлектронные приборы .» / Справочник.”- М.: Энергоатомиздат, 2002 г. 3. Балуев В.К. «Развитие...

  3. Признаки классификации полупроводниковых приборов

    Реферат >> Физика

    По каким признакам классифицируются полупроводниковые приборы ? Полупроводниковые приборы классифицируют в зависимости от механизма... оптически прозрачное окно. Светодиод Полупроводниковый оптоэлектронный прибор , преобразующий энергию протекающего прямого...

Оптоэлектроника - это раздел наукн и техники, в ротором изучаются вопросы генерации, обработки, запоминания и хранения информации на основе совместного использования электрических и оптических ивлений. Оптоэлектронные приборы используют при своей работе электромагнитное излучение оптического диапазона.

Современная микроэлектроника не решила проблему всеобщей микроминиатюризации электронной аппаратуры. Такие традиционные элементы, как трансформаторы, разъемные контакты, конденсаторы большой емкости плохо совмещаются с интегральными компонентами из-за больших габаритов. Особые трудности вызывает обеспечение электрической изоляции при связи двух систем: высоковольтной и низковольтной. В частности, такая задача возникает при создании устройств управления высоковольтными установками большой электроэнергии. Здесь на помощь приходит оптоэлектроника. Применение оптического канала связи позволяет обеспечить надежную электрическую изоляцию любых систем, исключить громоздкие реактивные и контактные компоненты, повысить надежность работы оборудования.

Элементная база оптоэлектроники включает в себя:

1) оптоизлучатели - преобразователи электрической энергии в световую;

2) фотоэлектрические приемники излучения (фотоприемники) - преобразователи световой энергии в электрическую;

3) приборы для электрической изоляции при передаче энергии и информации по световому каналу - оптоэлектронные приборы (оптопары);

4) световоды.

Ограничимся рассмотрением наиболее часто применяющихся в промышленной электронике полупроводниковых оптопар, источников или приемников некогерентного излучения.

Полупроводниковым излучателем света является светоизлучающий диод. Известно, что при рекомбинации носителей, т. е. возвращении электрона из зоны проводимости в валентную зону, излучается квант энергии. Наиболее интенсивно рекомбинация происходит вблизи перехода, когда основные носители преодолевают потенциальный барьер и рекомбинируют. Для создания светоизлучающих диодов используют сложные полупроводниковые материалы, у которых квант энергии излучается в оптическом (или инфракрасном) диапазоне, например фосфид галлия, арсенид галлия или карбид кремния. Излучение происходит при пропускании через прибор тока в прямом направлении. Конструкция прибора обеспечивает передачу света от перехода без значительных потерь в толще полупроводника. ВАХ светоизлучающих диодов аналогична характеристикам обычных кремниевых и германиевых диодов.

Светоизлучающие диоды выпускаются в виде отдельных элементов или групп (матриц) для индикации информации в виде букв, цифр и различных символов. Они входят также в состав оптопар. Обозначение светоизлучающего диода на схемах приведено на рис. 1.20, а.

Рис. 1.20. Схемные обозначения светоизлучающего диода (а), фотодиода (б), фототранзистора (в), фототиристора (г) и диодного оптрона (д)

К числу фотоприемников относятся фотодиоды, фототранзисторы, фототиристоры и другие приборы. В § 1.1 было упомянуто явление термогенерации, т. е. перехода электрона из валентной зоны в зону проводимости при нагреве. Аналогичный переход может произойти, если на слой полупроводника воздействовать светом. В результате увеличения числа неосновных носителей увеличивается проводимость вещества (появление фотопроводимости). При облучении светом перехода увеличивается ток неосновных носителей, т. е. увеличивается обратный ток этого перехода: где - световой поток.

На этом основана работа фотодиода, к которому подключается источник обратного напряжения через сопротивление нагрузки . При увеличении Ф увеличивается и растет падение напряжения на нагрузке Обозначение фотодиода на схемах приведено на рис. .

Работа фототранзистора также основана на фотопроводимости. В транзисторе без вывода базы во внешнюю цепь (т е. при ) ток в соответствии с (1.4) определяется

При облучении базы или области коллекторного перехода изменяется ток неосновных носителей пропорционально изменяется . В транзисторе с ОЭ ток усиливается в раз, поэтому мощность сигнала может быть выше, чем в фотодиоде, при том же уровне напряжений источника питания Е. Обозначение фототранзистора приведено на схеме рис. 1.20, в.

Принцип действия фототиристора (схемное обозначение приведено на рис. 1.20,г) на изменении тока воздействии светового облучения. При отсутствии управляющего электрода ток тиристора описывается выражением, получаемым из (1.9):

В фототиристоре . При увеличении светового потока растет и анодный ток . Как показано в § 1.7, при этом увеличиваются коэффициенты , а при достижении тиристор открывается. Таким образом, рост тока при увеличении светового потока стимулирует отпирание тиристора. Ток открытого тиристора может во много раз превышать значение .

Такпм образом, управляемые полупроводниковые приборы (транзистор и тирнстор) в качестве сигнала управления могут использовать товое излучение.

При использовании в качестве фотоприемника фототранзистора может быть получено усиление тока. Общим недостатком оптопар является нелинейность зависимости выходного сигнала от входного, обусловленная нелинейностью характеристик оптопар.

Передача информации от излучателя к фотоприемнику может производиться с помощью световодов: гибких шлангов, состоящих из отражающей оболочки и сердцевины из органического или неорганического стекла. Передача информации по световодам обеспечивает полную защищенность от электромагнитных помех.

Оптоэлектронные приборы находят все более широкое применение в информационной и энергетической электронике, в различных устройствах для передачи и отображения информации.

Оптоэлектронными называют приборы, преобразующие электрические сигналы в оптические. К оптоэлектронным приборам относят светоизлучающие диоды, оптопары и волоконно-оптические приборы.

Светоизлучающие диоды

Светоизлучающий диод – это полупроводниковый диод, излучающий энергию в видимой области спектра в результате рекомбинации электронов и дырок. В качестве самостоятельного прибора излучающий диод применяется в световых индикаторах, в которых используется явление излучения света
р-n переходом при прохождении через него прямого тока. Кванты света возникают при рекомбинации инжектируемых р-n переходом в базу диода неосновных носителей с основными носителями заряда (явление люминесценции).

Рис. 13.9

Устройство светодиода и его условное обозначение показаны на рис. 13.9. Часто светодиод снабжают пластмассовой светорассеивающей линзой. В таком виде его используют в качестве светосигнального индикатора. Яркость его свечения зависит от плотности тока, цвет свечения – от ширины запрещенной зоны и типа полупроводника. Цвета свечения: красный, желтый, зеленый. Так, например, светодиод 2Л101А имеет желтое свечение, яркость – 10 кДж /м 2 , ток – 10 мА , напряжение – 5 В .

Оптопары

Оптопара (оптрон) – это оптоэлектронный полупроводниковый прибор, состоящий из излучающего и светоприемного элементов, электрически изолированных друг от друга и имеющих между собой оптическую связь.

Рис. 13.10

Простейший оптрон состоит из светодиода и фотодиода, размещенных в одном корпусе. В качестве светоприемника также могут использоваться фототранзисторы, фототиристоры и фотосопротивления; при этом источник и приемник светового излучения выбирают спектрально согласованными.

Устройство простейшей диодной оптопары и ее условное графическое обозначение приведены на рис. 13.10.

Оптическая среда распространения сигнала может представлять собой прозрачное соединение на основе полимеров или особых стекол. Применяют также длинные волоконные светодиоды, с помощью которых можно разнести излучатель и приемник на значительное расстояние, обеспечив их надежную электрическую изоляцию друг от друга и помехоустойчивость. Это позволяет управлять высокими напряжениями (сотни киловольт) с помощью низких напряжений (несколько вольт).

Важным показателем работы оптрона является его быстродействие. Время переключения фоторезисторных оптопар составляет не более 3 мс .

Оптимизация